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Summary 

 

Picking first breaks on seismic data has historically been a 

very demanding and time-consuming task. It may take 

several weeks or even months to pick first breaks for a single 

seismic survey. Trace counts for modern 3D seismic surveys 

can now reach into the billions. Manually picking first 

breaks on billions of traces is not feasible. Some automated 

methods for first break picking already exist, but typically 

do not perform well in the presence of noise and azimuthal 

anisotropy. The Permian dataset used in this study contains 

noisy traces and a fill zone with strong anisotropy where 

most auto-pickers fail, requiring weeks of manual 

intervention. Using a combination of physics-based 

tomography and deep learning, we show that we can produce 

accurate first break picks in days rather than weeks. 

 

Introduction 

 

Accurate first break picks are important for building the 

velocity structure in the near surface, subsequent depth 

imaging, and eventual drilling for oil and gas. The entire 

seismic image building workflow depends on accurate first 

breaks and their associated tomography results. In order to 

avoid manually picking first breaks on every trace in a 

seismic survey, automated approaches have been introduced 

to simplify the process. The Threshold autopicker is one of 

these approaches, and has been used widely in the seismic 

industry for decades—it is based on the Coppens autopicker 

(Coppens, 1985). The Threshold approach works well when 

the signal-to-noise ratio is relatively high but tends to fail in 

the presence of noise. 

 

Convolutional neural networks (CNNs) have recently 

achieved state of the art results in many image classification 

tasks (Krizhevsky et al., 2012), even in the presence of noise. 

CNNs improve neural image processing results via the 

inductive bias present in their structure - the convolutional 

kernels naturally lend themselves to spatially correlated 

processing, while using far fewer parameters than classical 

fully connected neural networks. We model first break 

picking as an object detection nonlinear regression task and 

use a deep CNN as the function approximator. DeepTrace is 

trained on seismic data with human-labelled first breaks. The 

details of the DeepTrace method are discussed in more detail 

later in the text. 

 

In this paper, we compare the results of two workflows for 

automated first break picking: a traditional threshold 

autopicker and DeepTrace, a CNN autopicker. Given a 

rough moveout trend to flatten the first arrivals in the seismic 

data, DeepTrace picks accurate first breaks. After each stage 

of picking, a physics-based first break tomography is used to 

refine the moveout trend. We find that the error of the deep 

learning workflow results in an overall traveltime error of 10 

ms, whereas the result from the threshold autopicker results 

in an average traveltime error of 21 ms.  

 

Physics-Based Tomography Method 

 

The primary physical model used in this study is called Auto 

Adaptive Node Spacing (AANS), a tomographic algorithm 

that improves on traditional Eikonal travel time solvers 

(Vidale, 1988, 1990). The subsurface model consists of a 3D 

array of node locations where the vertical node spacing is 

allowed to differ from the horizontal node spacing. In order 

to simulate ray propagation, a dynamically generated subset 

of the master model with regular node spacing (same in all 

directions) is extracted from the full model. When 

computing travel times through the subset, node locations 

along each vertical column are dynamically adjusted to 

minimize travel time error. The slowness values at each node 

are chosen to minimize a least squared error objective 

function. 

  

Deep Learning Methods 

 

DeepTrace is a set of CNNs that have been trained to predict 

first breaks in seismic data. It is primarily trained on human-

labeled first break picks in a variety of seismic contexts. 

Models are trained directly on raw seismic data, as well as 

data that has been flattened using human defined move out 

trends - a generalized linear move out which varies as a 

function of offset and azimuth. We regularize DeepTrace 

and improve its generalization ability by training it on an 

ancillary seismic data reconstruction task - a form of 

unsupervised learning. During training, we mask part of the 

input seismic data and ask DeepTrace to reconstruct the 

missing input. This allows us to train on seismic data even 

where picks are missing. DeepTrace is further regularized 

with dropout (Hinton et al., 2012), such that certain neural 

pathways are randomly masked during training to encourage 

the network to learn robust and generalizable features. 

 

We perform data augmentation to further increase the 

training set size and improve generalization. Data is 

randomly translated, flipped, and noised to increase training 

diversity. We hold some data back to validate the training 

process. We randomly sample ~100 images per batch for the 

gradient update step and perform 50,000 steps per “epoch”. 

Around 25 epochs are needed for good convergence, so the 

number of images is approximately (100 images)*(50000 
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steps)*(25 epochs) = 125 million. DeepTrace achieves 

validation errors of less than 8 ms. We note that first arrivals 

are subjective, and that different humans will produce 

different first break picks. We do not believe that our 

training data is more accurate than ~8 ms, so it is difficult to 

judge DeepTrace’s performance gains beyond this point. 

 

We train DeepTrace networks on a variety of seismic image 

sizes. DeepTrace models trained on moved-out data 

typically receive 50-100 traces per image, with 200 samples 

(800 ms) of temporal context. DeepTrace sliding models 

predict only the arrival of the central trace in the image, so 

every trace is predicted using a separate image.  

 

DeepTrace models span more than an order of magnitude in 

terms of number of learnt parameters, from 10 million 

parameters at the small end to over 200 million. The models 

span a range of industry standard image recognition 

architectures. For pick prediction we use slightly modified 

ResNet-like architectures (He et al., 2016), and we use 

modified DeepLabv3 architectures (Chen et al., 2017) for the 

seismic reconstruction task. 

 

Field Data 

 

A 3D seismic survey called San Simon was conducted on the 

west side of Texas, USA in the Permian Basin for the 

purpose of oil and gas exploration. The survey contains 

approximately 33 million traces, with 41,455 unique shot 

locations and 48,586 unique receiver locations. The 

geographical footprint of the survey is approximately 265 

square miles. Figure 1 shows an elevation map of sources 

and receivers, as well as the location of a velocity profile.  

 

Practical Workflow Steps 

 

We now compare two workflows for automated first break 

picking: 1) the DeepTrace approach, and 2) the threshold 

autopicker approach. Table 1 summarizes the workflow 

steps to arrive at final tomography solutions and first break 

picks. A moveout trend to flatten the seismic gathers is 

required as a prerequisite to automatic picking (step 1). 

However, the moveout does not need to generate particularly 

flat seismic gathers for DeepTrace to accurately predict first 

break locations. If we could produce perfectly flat gathers 

everywhere a priori, our moveout trend would already 

encode the entirety of information contained in the first 

breaks, and there would be no need to produce picks. In 

reality, the Earth’s subsurface is highly heterogeneous, and 

it is nearly impossible to pick a universally flat moveout 

trend. DeepTrace only needs a very approximate moveout 

trend to accurately predict first breaks.  

 

Figure 2 shows an example of a raw seismic gather from the 

San Simon survey before and after a moveout trend has been 

applied. Manually picking a moveout trend for a whole 3D 

survey is very fast (30 minutes or less), as it can be very  

 

  

Figure 1: Elevation above mean sea level (MSL) map of sources 

and receivers for San Simon survey. The ‘F’ denotes the fill zone 

area and the dotted black line below it is the location of a 2D 

velocity model cross-section (shown in Figure 3). 

 

Table 1: First Break Prediction Workflows 

DeepTrace and 

Tomography Workflow 

Threshold and 

Tomography Workflow 

1. Pick azimuthal moveout trend 

2. DeepTrace 2. Threshold 

3. AANS tomography 3. AANS tomography 

4. DeepTrace  4. Threshold 

5. AANS tomography 5. AANS tomography 

6. DeepTrace 6. Threshold 

 

sparse. In some regions of the survey such as the fill zone, 

the variation of moveout with azimuth is pronounced; 

therefore, we picked an azimuthally varying moveout trend 

for a starting point for DeepTrace. To have a valid 

comparison to traditional autopicker tools, we used the same 

azimuthal moveout trend for both workflows. 

 

Step 2 involved using the automated approaches to predict 

the locations of first break picks. The key difference between 

workflows here is that on the one hand a pre-trained neural 

network model (from DeepTrace) was used to predict the 

locations of first breaks, and on the other hand a threshold 

autopicker approach was used.  

 

In step 3, a physics-driven first-break tomographic solution 

was completed for 15 iterations in each respective workflow. 

During tomography, a near-surface (5000 ft) P-wave 
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velocity model was generated. The goal of running 

tomography here was to produce a better moveout trend for 

subsequent automated first break picking. Once we have a 

tomographic model, we can use the simulated shot-receiver 

travel times to flatten the traces like a moveout trend, 

producing a different time-shift for each trace. 

 

 

Figure 2: An example of before and after a moveout trend is applied 
to a raw seismic gather from the San Simon survey. 

 

The remainder of the workflow (steps 4-6) was a continued 

iterative attempt that mimicked steps 2-3 to produce accurate 

first break picks. Each iteration of tomography produced a 

slightly better moveout trend, which allowed DeepTrace to 

predict a more accurate pick. In step 4 of the DeepTrace 

workflow, instead of only using one deep learning model to 

predict first break locations, an average of two prediction 

models were used. By ensembling different DeepTrace 

model predictions, we can get a quantitative picture of 

convergence and reliability and kill outliers in which the 

models strongly disagree about the first arrival. 

 

For the DeepTrace predictions, a 16 GB Tesla V100 GPU 

was used. The DeepTrace predictions each took around 3 

hours to complete. The threshold predictions each took 1 

hour to complete on 4 72-thread CPUs. The tomography runs 

each took around 48 hours on the same 72-thread CPUs. 

Both complete workflows took approximately 4 days. 

However, the computation time could be significantly 

reduced by using a larger cluster of CPU nodes during 

tomography. It is not unreasonable to assume that the 

complete workflow could take less than a day to complete 

given access to greater computing resources. 

 

Results 

 

Figure 3 shows the initial velocity model and final 

tomography results. The final model from the threshold auto 

picker workflow produced picks with an error of 21 ms. The 

final model from the DeepTrace picker produced picks with 

an error of 10 ms, about half of the threshold approach. The 

error is a measure between the forward modelled picks from 

the physics-based tomography and each respective auto 

picker. In theory, it would be helpful to compare picks to 

human picks; however, no such picks were available, and 

they would likely take over a month for one person to 

complete for the whole survey. We note that because the 

error only measures the disagreement between simulated 

model picks and DeepTrace picks, it is only an 

approximation of the “true” pick error, since errors in 

modeling will be reflected in this value. 

 

Beyond considering the overall traveltime error, we also 

qualitatively examined a subset of shots. Figure 4 shows two 

sample shot locations of final picks produced by the 

traditional threshold approach and final picks produced by 

DeepTrace. Overall, the DeepTrace picks are better aligned 

with the actual first arrival than the threshold picks. The 

DeepTrace picks also resulted in a more accurate 

tomographic solution and produced a flatter moveout 

correction to the seismic data. We believe that the 

combination of first-break tomography and deep learning 

was the key to our success in producing high quality first 

break picks. 

 

Figure 3: Velocity model profiles from west to east. The starting 
model (a); the final model after tomography using the threshold 

auto-picker workflow (b); and the final model after tomography 

using the Deeptrace workflow (c). The ‘F’ represents a ‘fill zone’, 

and the black curve represents ray penetration extents. 

 

Conclusions 

 

Using first-break tomography and deep learning, we 

produced accurate first-break picks with a 10 ms average 

error in only 4 days on a survey with approximately 33 

million traces. With added CPU capacity, the workflow 

could be reduced to under 24 hours. The traditional threshold 

approach resulted in misplaced picks and a tomography 

solution with 21 ms average error. In order to produce 

satisfactory results using the threshold workflow, at least 

three additional weeks of manual intervention would be 

required. Extending the use case to a dense 3D seismic 

survey with billions of traces, months of picking time could 

be reduced to days. There is often a tension in near-surface 
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geophysical modeling between taking human time to 

manually produce high quality picks, and quickly producing 

lower-quality picks using automated methods. We find that 

the deep learning + physics workflow described in this paper 

resolves this tension, freeing human time that is normally 

spent picking to focus on more complex geophysical 

modeling tasks. In order to better optimize DeepTrace for 

our dataset, we could in the future perform additional 

training on a portion of the field dataset to improve the 

prediction’s performance.  
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Figure 4: A comparison of first break picks using the Threshold and the DeepTrace workflows at two different locations: a  southern area 

in the fill zone (a and b), and a central area (c and d). The threshold workflow produces some accurate picks in high signal-to-noise areas 

but produces inaccurate picks on noisy traces (pink). DeepTrace however produces very accurate picks, even when noise is present (red). 
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